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Review of Lecture 2: Comparing Two Conditions or
Treatments
In Lecture 2, we discussed methods for comparing two conditions or
treatments.

For example, the Portland cement tension bond experiment involved
two different mortar formulations.
Another way to describe this experiment is as a single-factor
experiment with two levels of the factor:

The factor is mortar formulation.
The two levels are the two different formulation methods.

Many experiments of this type involve more than two levels of the
factor.
This chapter focuses on methods for the design and analysis of
single-factor experiments with an arbitrary number a levels of the
factor (or treatments).
We assume that the experiment has been completely randomized.
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Single-Factor Experiment: Two Levels (Mortar
Formulation)

Treatment (Level) Observations Totals y Averages ȳ
1 (M Mortar) y11 = 16.85, . . . , y1n y1. =

∑10
j=1 y1j ȳ1 = y1.

10
2 (Unm Mortar) y21 = 16.62, . . . , y2n y2. =

∑10
j=1 y2j ȳ2 = y2.

10

Table: Typical Data for a Single-Factor Experiment (Mortar Formulation)
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Single factor Analysis of Variance

Single factor Analysis of Variance

Example: RF Power vs. Etch Rate
Objective: To Investigate the relationship between RF power and etch
rate using a single-factor experiment. The goal is to find the power setting
that achieves the target etch rate.
Experimental Design:

Factor: RF Power
Levels: 4 (160, 180, 200, 220 W)
Replicates: 5 wafers per power level
Total Runs: 20 (randomized)
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Single factor Analysis of Variance

Example...

Randomization:
Use a spreadsheet (e.g., Excel) to list the 20 runs.
Generate a column of random numbers using the RAND() function.
Sort the run order by this column to ensure randomization.

Example Run Order Generation:
1 Enter RF power levels and replicates in rows.
2 Generate random numbers with =RAND() in an adjacent column.
3 Sort all data by the random number column.
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Single factor Analysis of Variance

Example...

Figure: 3.1 A single-wafer plasma etching tool
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Single factor Analysis of Variance

Example...
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Single factor Analysis of Variance

Importance of Randomization in Experimental
Design

Problem with Non-Randomized Runs:
Running tests in a nonrandomized order (e.g., all 160 W tests first,
then 180 W, etc.) can introduce **nuisance variables**.
One such nuisance variable could be a **warm-up effect** in the
etching tool, where prolonged tool usage lowers the etch rate.
If the warm-up effect occurs, it could systematically distort the
results, leading to invalid conclusions.

Solution: Randomization
By running the 20 wafers in a random order, the effects of the
warm-up are spread out across all RF power levels.
This randomization prevents the warm-up effect from contaminating
the results for any one power setting.
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Single factor Analysis of Variance

Example...

Graphical Examination of Data:
Box Plots: A box plot for etch rates at each RF power level can help
visualize variation and central tendency.
Scatter Plot: A scatter plot of etch rate vs. RF power shows the
trend and possible linear relationships.
Both graphs suggest that etch rate increases as RF power increases.

Conclusion:
Randomization is critical in experimental design to avoid biases
introduced by uncontrolled variables, such as equipment effects or
environmental changes.
Visualizing data with box plots and scatter plots helps identify trends
and relationships in the experiment.
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Single factor Analysis of Variance

Example...

Figure: 3.2 Box plots of the etch rate data
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Single factor Analysis of Variance

Example...

Figure: 3.3 scatter diagram of the etch rate data
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Single factor Analysis of Variance

Example...

Figure: 3.3 scatter diagram of the etch rate data
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Single factor Analysis of Variance The analysis of variance

Suppose we have a treatments or different levels of a single factor
that we wish to compare.
The observed response from each of the a treatments is a random
variable. The data would appear as in Table 3.2.
An entry in Table 3.2 (e.g.,yi j) represents the jth observation taken
under factor level or treatment i. There will be, in general, n
observations under the ith treatment.
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Single factor Analysis of Variance The analysis of variance

The analysis of variance
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Single factor Analysis of Variance The analysis of variance

The analysis of variance

We will describe observations from an experiment with a model
Two main models: means model and effects model
Both are linear statistical models
We’ll focus on one-way or single-factor ANOVA
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Single factor Analysis of Variance The analysis of variance

Means Model

The means model is given by:

yij = µi + εij

{
i = 1, 2, . . . , a
j = 1, 2, . . . , n

(3.1)

Where:
yij is the ijth observation
µi is the mean of the ith factor level or treatment
εij is a random error component
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Single factor Analysis of Variance The analysis of variance

Effects Model

The effects model is derived by defining µi = µ+ τi :

yij = µ+ τi + εij

{
i = 1, 2, . . . , a
j = 1, 2, . . . , n

(3.2)

Where:
µ is the overall mean
τi is the ith treatment effect

This Model is called the one-way or single-factor analysis of
variance(ANOVA) model because only one factor is investigated.
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Single factor Analysis of Variance The analysis of variance

Model Assumptions

For hypothesis testing:
Errors are normally and independently distributed
Errors have mean zero and variance σ2

Variance σ2 is constant for all factor levels
Observations are mutually independent

This implies:
yij ∼ N(µ+ τi , σ

2)
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Single factor Analysis of Variance The analysis of variance

Fixed vs Random Factor

Two scenarios:
1 Fixed Effects Model

Treatments specifically chosen by experimenter
Conclusions apply only to factor levels considered
Estimate model parameters (µ, τi , σ2)

2 Random Effects Model
Treatments are a random sample from a larger population
Conclusions can be extended to all treatments in the population
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Single factor Analysis of Variance Analysis of the Fixed Effects Model

Analysis of the Fixed Effects Model

In this section, we develop the single-factor analysis of variance for the
fixed effects model.
Notation

yi .: total of observations under the ith treatment
ȳi .: average of observations under the ith treatment
y..: grand total of all observations
ȳ..: grand average of all observations
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Single factor Analysis of Variance Analysis of the Fixed Effects Model

Mathematical Expressions

yi . =
n∑

j=1
yij

ȳi . = yi .
n i = 1, 2, . . . , a

y.. =
a∑

i=1

n∑
j=1

yij

ȳ.. = y..
N

(3.3)

where N = an is the total number of observations.
The "dot" subscript notation implies summation over the subscript that it
replaces.
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Single factor Analysis of Variance Analysis of the Fixed Effects Model

Hypotheses for Treatment Means

We are testing the equality of a treatment means: E (yij) = µ+ τi = µi ,
i = 1, 2, . . . , a

H0 : µ1 = µ2 = · · · = µa

H1 : µi 6= µj for at least one pair (i , j)
(3.4)

Effects Model Breakdown
In the effects model:

µi = µ+ τi

µ is the overall mean∑a
i=1 µi = aµ∑a
i=1 τi = 0

Treatment effects τi can be thought of as deviations from the overall mean.
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Single factor Analysis of Variance Analysis of the Fixed Effects Model

Equivalent Hypotheses

An equivalent way to write the hypotheses in terms of treatment effects τi :

H0 : τ1 = τ2 = · · · = τa = 0
H1 : τi 6= 0 for at least one i

Equivalent Hypotheses
We test the equality of treatment means
Alternatively, we test if treatment effects are zero
The appropriate procedure for testing is the analysis of variance
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Single factor Analysis of Variance Decomposition of the Total Sum of Squares

Decomposition of the Total Sum of Squares

Analysis of Variance (ANOVA) partitions total variability into
component parts
We use the total corrected sum of squares as a measure of overall
variability
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Single factor Analysis of Variance Decomposition of the Total Sum of Squares

Total Corrected Sum of Squares

The total corrected sum of squares (SST) is defined as:

SST =
a∑

i=1

n∑
j=1

(yij − ȳ..)2 (3.5)

where:
a is the number of treatments
n is the number of replicates per treatment
yij is the jth observation in the ith treatment
ȳ.. is the grand mean
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Single factor Analysis of Variance Decomposition of the Total Sum of Squares

Decomposition of SST

SST can be decomposed as:

SST =
a∑

i=1

n∑
j=1

[(yi . − ȳ..) + (yij − yi .)]2

= n
a∑

i=1
(yi . − ȳ..)2 +

a∑
i=1

n∑
j=1

(yij − yi .)2
(3.6)
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Single factor Analysis of Variance Decomposition of the Total Sum of Squares

Fundamental ANOVA Identity

Equation 3.6 is the fundamental ANOVA identity:

SST = SSTreatments + SSE

where:
SSTreatments is the sum of squares due to treatments (between
treatments)
SSE is the sum of squares due to error (within treatments)
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Single factor Analysis of Variance Decomposition of the Total Sum of Squares

Degrees of Freedom

Total: N − 1 (where N = an)
Treatments: a − 1
Error: a(n − 1) = an − a = N − a

Error Sum of Squares
The error sum of squares is:

SSE =
a∑

i=1

n∑
j=1

(yij − yi .)2 =
a∑

i=1

n∑
j=1

(yij − ȳi .)2
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Single factor Analysis of Variance Decomposition of the Total Sum of Squares

Interpretation

SSTreatments : Measures differences between treatment means
SSE : Measures differences due to random error within treatments
The decomposition allows us to compare these sources of variation
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Single factor Analysis of Variance Decomposition of the Total Sum of Squares

Sample Variance Within Treatmentsn

We will examine:
Sample variance within treatments
Pooled estimate of common variance
Mean squares and their expected values
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Single factor Analysis of Variance Decomposition of the Total Sum of Squares

Sample Variance Within Treatments

The sample variance in the ith treatment is:

S2
i =

∑n
j=1(yij − ȳi .)2

n − 1 , i = 1, 2, . . . , a
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Single factor Analysis of Variance Decomposition of the Total Sum of Squares

Pooled Estimate of Common Variance

Combining a sample variances:∑a
i=1(n − 1)S2

i
(n − 1) + (n − 1) + · · ·+ (n − 1) =

∑a
i=1

∑n
j=1(yij − ȳi .)2

a(n − 1) = SSE
N − a

SSE/(N − a) is a pooled estimate of the common variance within each of
the a treatments.
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Single factor Analysis of Variance Decomposition of the Total Sum of Squares

Estimating σ2 from Treatment Means

If there were no differences between the a treatment means:∑a
i=1(ȳi . − ȳ..)2

a − 1

estimates σ2 if the treatment means are equal.
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Single factor Analysis of Variance Decomposition of the Total Sum of Squares

Intuitive Explanation

∑a
i=1(ȳi.−ȳ..)2

a−1 estimates σ2/n

So n
∑a

i=1(ȳi.−ȳ..)2

a−1 estimates σ2

This holds if there are no differences in treatment means
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Single factor Analysis of Variance Decomposition of the Total Sum of Squares

Mean Squares

We define two mean squares:

MSTreatments = SSTreatments
a − 1 = n

∑a
i=1(ȳi . − ȳ..)2

a − 1

MSE = SSE
N − a
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Single factor Analysis of Variance Decomposition of the Total Sum of Squares

Expected Value of MSE

Consider:

E (MSE ) = E

 1
N − a

a∑
i=1

n∑
j=1

(yij − ȳi .)2


= 1

N − aE

 a∑
i=1

n∑
j=1

(y2
ij − 2yij ȳi . + ȳ2

i .)



= 1
N − aE

 a∑
i=1

n∑
j=1

y2
ij − 2n

a∑
i=1

ȳ2
i . + n

a∑
i=1

ȳ2
i .


= 1

N − aE

 a∑
i=1

n∑
j=1

y2
ij − n

a∑
i=1

ȳ2
i .
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Single factor Analysis of Variance Decomposition of the Total Sum of Squares

Expected Value of MSE...

Substituting the model (Equation 3.1) into this equation, we obtain:

E (MSE ) = 1
N − aE

 a∑
i=1

n∑
j=1

(µ+ τi + εij)2 − 1
n

a∑
i=1

 n∑
j=1

µ+ τi + εij

2


When squaring and taking expectation, terms involving ε and τ are
replaced by σ2 and nτ2, respectively, because E (εij) = 0.
All cross products involving εij have zero expectation.

Ahmed A.(Msc) (DDU) Department of Statistics October 9, 2024 38 / 68



Single factor Analysis of Variance Decomposition of the Total Sum of Squares

Expectation of Mean Squares

After squaring and taking expectation, we get:

E (MSE ) = 1
N − a

(
Nσ2 + n

a∑
i=1

τ2
i + Nσ2 − Nµ2 − n

a∑
i=1

τ2
i − aσ2

)

E (MSE ) = σ2

Similarly, we can show that:

E (MSTreatments) = σ2 + n
∑a

i=1 τ
2
i

a − 1

If there are no differences in treatment means (τi = 0), MSTreatments
also estimates σ2.
If treatment means differ, the expected value of the treatment mean
square is greater than σ2.
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Single factor Analysis of Variance Statistical Analysis

Statistical Analysis

We can test the hypothesis of no difference in treatment means by
comparing MSTreatments and MSE .
Null hypothesis:
H0 : µ1 = µ2 = . . . = µa, or equivalently, H0 : τ1 = τ2 = . . . = τa = 0
Assumptions:

Errors εij are normally and independently distributed
Mean zero and variance σ2
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Single factor Analysis of Variance Statistical Analysis

Distribution of Sum of Squares

SST/σ2 is distributed as chi-square with N − 1 degrees of freedom
SSE/σ2 is chi-square with N − a degrees of freedom
If H0 : τi = 0 is true, SSTreatments/σ

2 is chi-square with a − 1 degrees
of freedom
Note: SSTreatments and SSE add up to SST
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Single factor Analysis of Variance Statistical Analysis

Cochran’s Theorem

Cochran’s theorem is useful in establishing the independence of SSE
and SSTreatments

This theorem helps in formulating the F-test for ANOVA
The F-test compares the ratio of MSTreatments to MSE with the
F-distribution
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Single factor Analysis of Variance Statistical Analysis

Cochran’s Theorem
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Single factor Analysis of Variance Statistical Analysis

Cochran’s Theorem and Degrees of Freedom

The degrees of freedom for SSTreatments and SSE add to N − 1, the
total number of degrees of freedom.
Cochran’s theorem implies that SSTreatments/σ

2 and SSE/σ2 are
independently distributed chi-square random variables.
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Single factor Analysis of Variance Statistical Analysis

F-Distribution

If the null hypothesis of no difference in treatment means is true, the
ratio

F0 = MSTreatments
MSE (3.7)

is distributed as F with a − 1 and N − a degrees of freedom.
Equation (3.7) is the test statistic for the hypothesis of no differences
in treatment means.
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Single factor Analysis of Variance Statistical Analysis

Expected Mean Squares

MSE is an unbiased estimator of σ2.
Under the null hypothesis, MSTreatments is also an unbiased estimator
of σ2.
If the null hypothesis is false, the expected value of MSTreatments is
greater than σ2.
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Single factor Analysis of Variance Statistical Analysis

Rejecting the Null Hypothesis

Under the alternative hypothesis, the numerator of the test statistic is
greater than the denominator.
Therefore, we reject H0 for large values of the test statistic.
This implies an upper-tail, one-tail critical region:

F0 > F (α, a − 1,N − a)

Ahmed A.(Msc) (DDU) Department of Statistics October 9, 2024 47 / 68



Single factor Analysis of Variance Statistical Analysis

Computing Sums of Squares

The sums of squares can be computed in several ways.
One direct approach is:

SSTreatments = 1
n

a∑
i=1

y2
i −

y2
...

N (3.8)

SST =
a∑

i=1

n∑
j=1

y2
ij −

y2
...

N (3.9)

SSE = SST − SSTreatments (3.10)
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Single factor Analysis of Variance Statistical Analysis

Using a Spreadsheet

A spreadsheet can be used to compute these terms for each
observation.
Sum the squares to obtain SST , SSTreatments, and SSE .
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Single factor Analysis of Variance Statistical Analysis

ANOVA Table for the Single-Factor, Fixed Effects
Model
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Single factor Analysis of Variance Statistical Analysis

ANOVA Example

The engineer is interested in determining if the RF power setting
affects the etch rate.
A completely randomized experiment with four levels of RF power
and five replicates was conducted.
Data from the experiment is shown below (from Table 3.1). We will
use the analysis of variance to test
H0:µ1 = µ2 = µ3 = µ4 against the alternative
H1: some means are different.
The sums of squares required are computed as follows:
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Single factor Analysis of Variance Statistical Analysis

ANOVA Example
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Single factor Analysis of Variance Statistical Analysis

Sums of Squares Calculation

SST =
4∑

i=1

5∑
j=1

y2
ij −

y2
..

N =
[
(575)2 + (542)2 · · ·+ (710)2

]
− (12, 355)2

20

= 72, 209.75

SSTreatments = 1
n

4∑
i=1

y2
i . −

y2
..

N = 1
5
[
(2756)2 + · · ·+ (3535)2

]
− (12, 355)2

20

= 66, 870.55

SSE = SST − SSTreatments = 72, 209.75− 66, 870.55 = 5339.20
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Single factor Analysis of Variance Statistical Analysis

ANOVA Example
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Single factor Analysis of Variance Statistical Analysis

ANOVA Example

We compute the F-ratio as:

F0 = 22, 290.18
333.70 = 66.80

We compare this to the critical value from the F3,16 distribution at
α = 0.05:

F0.05,3,16 = 3.24

Since F0 = 66.80 > 3.24, we reject the null hypothesis H0 and
conclude that the treatment means differ significantly.
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Single factor Analysis of Variance Statistical Analysis

Conclusion

Since F0 = 66.80 is much larger than the critical value 3.24, we reject
H0 and conclude that the RF power setting significantly affects the
mean etch rate.
The P-value for this test statistic is very small, indicating strong
evidence against H0.
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Single factor Analysis of Variance Estimation of the Model Parameters

Estimators for the Single-Factor Model

We now present estimators for the parameters in the single-factor model
and confidence intervals on the treatment means.

Reasonable estimates of the overall mean and the treatment effects
are given by (Equation 3.11).
The overall mean is estimated by the grand average of the
observations:

µ̂ = ȳ..
The treatment effect for the ith treatment is estimated as the
difference between the treatment average and the grand average:

τ̂i = ȳi . − ȳ.., i = 1, 2, . . . , a (3.11)
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Single factor Analysis of Variance Estimation of the Model Parameters

Confidence Interval on the ith Treatment Mean

A point estimator of µi is µ̂i = ȳi ..
Assuming normally distributed errors, each treatment average is
distributed as:

ȳi . ∼ NID(µi , σ
2/n)

If σ2 were known, we could use the normal distribution to define the
confidence interval.
Using MSE as an estimator of σ2, we base the confidence interval on
the t-distribution.
A 100(1− α)% confidence interval on the ith treatment mean µi is
given by:

ȳi . − tα/2,N−a

√
MSE

n ≤ µi ≤ ȳi . + tα/2,N−a

√
MSE

n (3.12)
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Single factor Analysis of Variance Estimation of the Model Parameters

Confidence Interval for the Difference Between Two
Treatment Means

Differences in treatments are often of great practical interest.
A 100(1− α)% confidence interval on the difference between two
treatment means, µi − µj , is given by:

ȳi . − ȳj. − tα/2,N−a

√
2MSE

n ≤ µi − µj ≤ ȳi . − ȳj. + tα/2,N−a

√
2MSE

n
(3.13)
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Single factor Analysis of Variance Unbalanced Data

Unbalanced Single-Factor Experiments

In some single-factor experiments, the number of observations taken
within each treatment may differ.
We refer to this design as **unbalanced**.
The analysis of variance (ANOVA) described earlier can still be used,
but slight modifications must be made in the sum of squares formulas.
Let ni represent the number of observations under treatment i
(i = 1, 2, . . . , a), and N =

∑
ni be the total number of observations.
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Single factor Analysis of Variance Unbalanced Data

Modified Sum of Squares Formulas

The sum of squares total (SST ) and sum of squares for treatments
(SSTreatments) are adjusted as follows:

The manual computational formula for the total sum of squares
(SST ) is:

SST =
a∑

i=1

ni∑
j=1

y2
ij −

y2
...

N (3.14)

The sum of squares for treatments (SSTreatments) is:

SSTreatments =
a∑

i=1

y2
i .

ni
− y2

...

N (3.15)
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Single factor Analysis of Variance Unbalanced Data

unbalanced designs

Other than the modifications in the sum of squares formulas, no
further changes are required in the analysis of variance for unbalanced
designs.
The resulting analysis follows the same framework as balanced designs
but accommodates unequal sample sizes.
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Single factor Analysis of Variance Unbalanced Data

Advantages of a Balanced Design

There are two main advantages of using a balanced design:
1 **Insensitivity to Variance Assumptions**:

When the sample sizes are equal across treatments, the test statistic is
relatively insensitive to small departures from the assumption of equal
variances across the a treatments.
This is not the case for **unequal sample sizes**, where unequal
variances can have a larger impact on the test results.

2 **Maximized Power of the Test**:
The power of the test is **maximized** when the sample sizes are
equal across treatments.
Equal sample sizes allow the test to more effectively detect differences
in treatment means.
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Single factor Analysis of Variance Model Adequacy Checking

Model Adequacy Checking

The decomposition of the variability in the observations through an
analysis of variance identity (Equation 3.6) is a purely algebraic
relationship. However, the use of partitioning to test for no differences in
treatment means requires that certain assumptions be satisfied.

Observations are adequately described by the model.
Errors are normally and independently distributed with mean zero and
constant but unknown variance σ2.

If these assumptions are valid, the ANOVA procedure is an exact test of
the hypothesis of no difference in treatment means. However, in practice,
these assumptions may not hold exactly.

Ahmed A.(Msc) (DDU) Department of Statistics October 9, 2024 64 / 68



Single factor Analysis of Variance Model Adequacy Checking

Importance of Checking Assumptions

It is usually unwise to rely on ANOVA until the validity of these
assumptions has been checked. Violations of the basic assumptions and
model adequacy can be investigated by examining residuals.

eij = yij − ŷij (3.16)

where ŷij is the estimated observation obtained as:

ŷij = µ̂+ τ̄i

= ȳ.. + (ȳi . − ȳ..)
= ȳi . (3.17)

Examination of the residuals should be an automatic part of any ANOVA.
If the model is adequate, the residuals should be structureless and contain
no obvious patterns.
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Residuals and Model Inadequacies

Through the analysis of residuals, many types of model inadequacies and
violations of the underlying assumptions can be discovered.
Graphical Analysis of Residuals:

Residuals should be plotted to check for patterns.
A structured pattern indicates model inadequacy.
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Normality Assumption

A check of the normality assumption can be made by plotting a histogram
of the residuals. If the NID(0, σ2) assumption on the errors is satisfied, the
histogram should resemble a normal distribution centered at zero.

With small samples, significant fluctuations may occur.
Moderate departures from normality do not necessarily indicate
serious violations.
Gross deviations from normality are serious and require further
analysis.
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Normal Probability Plot

An extremely useful procedure is to construct a normal probability plot of
the residuals.

If the underlying error distribution is normal, this plot will resemble a
straight line.
Emphasize the central values of the plot more than the extremes.
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